1,420 research outputs found

    Detection, Location, and Classification of Space Shuttle Main Engine Nozzle Leaks by Transient Thermographic Inspection

    Get PDF
    Leak checking and evaluation of pressure vessels by observing the slight temperature changes resulting from structural anomalies has been made possible through developments in high resolution infrared cameras and advanced image processing. These developments have made thermal nondestructive analysis a very practical and efficient method to determine material consistency and structural quality as well as monitor processes. The Space Shuttle Main Engine Nozzle has regions which can not be inspected with standard leak check methods. The Thermographic methods being developed to nondestructively test the Nozzle for leaks in inaccessible regions are reported. Also, a flash heating Thermographic investigation of the braze line bonding the cooling tubes to the outer structural jacket of the nozzle is reported

    Thermographic Leak Detection of the Space Shuttle Main Engine Nozzle

    Get PDF
    The Space Shuttle Main Engines Nozzles consist of over one thousand tapered Inconel coolant tubes brazed to a stainless steel structural jacket. Liquid Hydrogen flows through the tubing, from the aft to forward end of the nozzle, under high pressure to maintain a thermal balance between the rocket exhaust and the nozzle wall. Three potential problems occur within the SSME nozzle coolant tubes as a result of manufacturing anomalies and the highly volatile service environment including poor or incomplete bonding of the tubes to the structural jacket, cold wall leaks and hot wall leaks. Of these conditions the identification of cold wall leaks has been the most problematic. The methods and results presented in this summary addresses the thermographic identification of cold wall "interstitial" leaks between the structural jacket and coolant tubes of the Space Shuttle Main Engines Nozzles

    Thermographic Qualification of Graphite/Epoxy Instrumentation Racks

    Get PDF
    A nondestructive evaluation method is desired for ensuring the 'as manufactured' and 'post service' quality of graphite/epoxy instrumentation rack shells. The damage tolerance and geometry of the racks dictate that the evaluation method be capable of identifying defects, as small as 0.25 inch 2 in area, over large acreage regions, tight compound radii and thickness transition zones. The primary defects of interest include voids, inclusions, delaminations and porosity. The potential for an infrared thermographic inspection to replace ultrasonic testing, for qualifying the racks as 'defect free' is under investigation. The inspection process is validated by evaluating defect standard panels built to the same specifications as the racks, except for the insertion of artificial fabricated defects. The artificial defects are designed to match those which are most prevalent in the actual instrumentation racks. A target defect area of 0.0625 inch 2 (a square with 0.25 inch on a side) was chosen for the defect standard panels to ensure the ability to find all defects of the critical (0.25 inch squared) size

    The Ursinus Weekly, March 8, 1965

    Get PDF
    Freshmen women receive UC colors, learn meaning in 35th annual observance • William James scholar to speak in faculty Forum • Faculty agrees to publish next Weekly issue • Carousel features queen and court, Cub and Key seven: Fine decorations, Al Raymond band add to evening • Psych Club hears Phila. social worker • Two seniors win electrochemical scholarships • Students produce House hearing on Watkins case • 33 men join fraternities: Five frats bid • Applications urged for political internship plan • Track notice • Editorial: Fraternity rushing • Red China today: Still growing • Letters to the editor • Book review: Good grief, it\u27s Candy • Snellbelles smash East Stroudsburg 63-48, return match no match: Regester, Kohn lead offense with 38; Day, Smiley control defensive boards • Wrestlers end, tie last match • Fircroft takes the field; Spring finds us ready • UC grad presents flag flown over South Pole • UC student lectures to DAR • Advice column • Dean\u27s listhttps://digitalcommons.ursinus.edu/weekly/1242/thumbnail.jp

    A Multi-Parametric Imaging Investigation of the Response of C6 Glioma Xenografts to MLN0518 (Tandutinib) Treatment.

    Get PDF
    Angiogenesis, the development of new blood vessels, is essential for tumour growth; this process is stimulated by the secretion of numerous growth factors including platelet derived growth factor (PDGF). PDGF signalling, through its receptor platelet derived growth factor receptor (PDGFR), is involved in vessel maturation, stimulation of angiogenesis and upregulation of other angiogenic factors, including vascular endothelial growth factor (VEGF). PDGFR is a promising target for anti-cancer therapy because it is expressed on both tumour cells and stromal cells associated with the vasculature. MLN0518 (tandutinib) is a potent inhibitor of type III receptor tyrosine kinases that demonstrates activity against PDGFRα/β, FLT3 and c-KIT. In this study a multi-parametric MRI and histopathological approach was used to interrogate changes in vascular haemodynamics, structural response and hypoxia in C6 glioma xenografts in response to treatment with MLN0518. The doubling time of tumours in mice treated with MLN0518 was significantly longer than tumours in vehicle treated mice. The perfused vessel area, number of alpha smooth muscle actin positive vessels and hypoxic area in MLN0518 treated tumours were also significantly lower after 10 days treatment. These changes were not accompanied by alterations in vessel calibre or fractional blood volume as assessed using susceptibility contrast MRI. Histological assessment of vessel size and total perfused area did not demonstrate any change with treatment. Intrinsic susceptibility MRI did not reveal any difference in baseline R2* or carbogen-induced change in R2*. Dynamic contrast-enhanced MRI revealed anti-vascular effects of MLN0518 following 3 days treatment. Hypoxia confers chemo- and radio-resistance, and alongside PDGF, is implicated in evasive resistance to agents targeted against VEGF signalling. PDGFR antagonists may improve potency and efficacy of other therapeutics in combination. This study highlights the challenges of identifying appropriate quantitative imaging response biomarkers in heterogeneous models, particularly considering the multifaceted roles of angiogenic growth factors

    Quantification of light attenuation in optically cleared mouse brains

    Get PDF
    Optical clearing, in combination with recently developed optical imaging techniques, enables visualization and acquisition of high-resolution, three-dimensional images of biological structures deep within the tissue. Many different approaches can be used to reduce light absorption and scattering within the tissue, but there is a paucity of research on the quantification of clearing efficacy. With the use of a custom-made spectroscopy system, we developed a way to quantify the quality of clearing in biological tissue and applied it to the mouse brain. Three clearing techniques were compared: BABB (1:2 mixture of benzyl alcohol and benzyl benzoate, also known as Murray’s clear), pBABB (peroxide BABB, a modification of BABB which includes the use of hydrogen peroxide), and passive CLARITY. We found that BABB and pBABB produced the highest degree of optical clearing. Furthermore, the approach allows regional measurement of light attenuation to be performed, and our results show that light is most attenuated in regions with high lipid content. We provide a way to choose between the multiple clearing protocols available, and it could prove useful for evaluating images that are acquired with cleared tissues

    Decomposition of spontaneous fluctuations in tumour oxygenation using BOLD MRI and independent component analysis

    Get PDF
    Solid tumours can undergo cycles of hypoxia, followed by reoxygenation, which can have significant implications for the success of anticancer therapies. A need therefore exists to develop methods to aid its detection and to further characterise its biological basis. We present here a novel method for decomposing systemic and tumour-specific contributions to fluctuations in tumour deoxyhaemoglobin concentration, based on magnetic resonance imaging measurements

    The Ursinus Weekly, November 16, 1964

    Get PDF
    11 students elected to Who\u27s who in American colleges • Museum director Turner speaks on American art • Lord and Lady, class officers named at Senior Ball, Friday: Extensive decorations create Camelot atmosphere • Curtain Club stages Fall play this weekend: Free student performance Friday • Temple scientists to visit campus, discuss careers • Summer harvest movie shown to PSEA members • Karen Wagner chosen Jr. Miss Montgomery Co. • German Club discusses life in Europe • Local NAACP members to speak to student tutors • PAC sponsors work camp talk • Editorial: Our policing system • Life up the hill at Fircroft social club • Letters to the editor • Questions and answers about Giefan • UC history: Cheerleaders • How to be an All-American; A case study • Hockey undefeated 3rd year in a row: Gettysburg succumbs 4-1 in final game; Victory extends unbeaten streak record • Friday 13 unlucky soccermen fall 1-0 to Muhlenberg foe • Football beaten 47-22 by Lebanon Valley: Injury-racked squad no match for foe; Degenhardt scores all U.C. points • Greek gleaningshttps://digitalcommons.ursinus.edu/weekly/1234/thumbnail.jp

    Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation

    Get PDF
    Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically viable method for measuring TLBF and hepatic arterial flow. Online supplemental material is available for this article

    Multifluorescence High‐Resolution Episcopic Microscopy for 3D Imaging of Adult Murine Organs

    Get PDF
    3D microscopy of large biological samples (>0.5 cm^{3})is transforming biological research. Many existing techniques require trade-offs between image resolution, sample size, and method complexity. A simple robust instrument with the potential to conduct large-volume 3D imaging currently exists in the form of the optical high-resolution episcopic microscopy (HREM). However, the development of the instrument to date is limited to single-fluorescent wavelength imaging with nonspecific eosin staining. Herein, developments to realize the potential of the HREM to become multifluorescent high-resolution episcopic microscopy (MF-HREM) are presented. MF-HREM is a serial-sectioning and block-facing wide-field fluorescence imaging technique, which does not require tissue clearing or optical sectioning. Multiple developments are detailed in sample preparation and image postprocessing to enable multiple specific stains in large samples and show how these enable segmentation and quantification of the data. The application of MF-HREM is demonstrated in a variety of biological contexts: 3D imaging of whole tumor vascular networks and tumor cell invasion in xenograft tumors up to 7.5 mm^{3} at resolutions of 2.75 μm, quantification of glomeruli volume in the adult mouse kidney, and quantification of vascular networks and white-matter track orientation in adult mouse brain
    corecore